Looking for associations among multiple variables is a topical issue in statistics due to
the increasing amount of data encountered in biology, medicine and many other domains
involving statistical applications. Graphical models have recently gained popularity for
this purpose in the statistical literature. Following the ideas of the LASSO procedure
designed for the linear regression framework, recent developments dealing with graphical
model selection have been based on ¢1-penalization. In the binary case, however, exact
inference is generally very slow or even intractable because of the form of the so-called
log-partition function. Various approximate methods have recently been proposed in the
literature and the main objective of this paper is to compare them. Through an extensive
simulation study, we show that a simple modification of a method relying on a Gaussian
approximation achieves good performance and is very fast. We present a real application
in which we search for associations among causes of death recorded on French death
certificates.

1 Introduction

In biology, medicine, and many other domains of statistical application, researchers are in-
creasingly faced with problems involving numerous variables and a natural problem is that
of studying their relationships. Standard examples are the construction of social or commu-
nication networks and systems biology. When the underlying variables are binary (which is
the focus of this paper), a classical way for studying their relatiogships is to use Poisson log-
linear models for multiway contingency tables (Agresti, 1990, %cullagh and Nelder, 1989).
How to perform selection in log-linear models, or equival in binary graphical models,
depends upon the number of variables p. Indeed, the totafNmtimber of cell entries for a p-way
contingency table is 2P, and the total number of free eters in the associated saturated
model is 27 — 1. When p is low, a standard approa %ﬁ model selection is greedy stepwise
forward-selection or backward-deletion: in each st®% selection or deletion is based on hy-
pothesis testing at some level . However, the putational complexity even for modestly
dimensioned contingency tables plus the mul#iple hypothesis testing issues related to such
a procedure has made it unpopular in this@ text. Consequently, Dahinden et al. (2007)
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recently performed selection in log-linear models by using an /1-penalized version of the log-
likelihood, extending the LASSO ideas (Tibshirani, 1996) originally designed for selection in
linear models. However, computing the (penalized) log-likelihood for log-linear models gen-
erally requires the enumeration of each of the 2P profiles, which is not plausible for large p
(e.g., larger than about 30). For such moderate-to-large values of p, alternative methods are
required.

Roughly speaking, two approaches have been proposed in the literature. First, exact inference
can be performed in the case of highly sparse models. For instance, exact computation via the
junction tree algorithm is manageable for highly sparse graphs but becomes unwieldy for dense
graphs (Lee et al!, 2007). The second approach is to use approximate inference. Notably,
much attention has recently been paid to methods relying on proxies for the exact likelihood.
Hofling and Tibshirani (2009) and [Wang et all (2010) proposed two distinct algorithms to
maximize an {i-penalized version of the so-called pseudo-likelihgod (Besag, 11975). These
methods are closely related to the one formerly proposed by Wlhvright et all (2006) who
used f1-penalized logistic regressions on each single node to:ﬁq truct the whole graphical
model. Besides these three methods, Banerjee et al! (2008) Q‘a convex relaxation technique
to derive a Gaussian approximate log-likelihood as Well %sparse maximum solution.

Interestingly, Hofling and Tibshirani (2009) showed t gh an extensive simulation study
that approximate solutions (either solutions maximizjgg the pseudo-likelihood or those derived
from the method proposed by [Wainwright et al. (ZGQE') are much faster and only slightly less
accurate than exact methods. However, no empir evaluation of the Gaussian approximate
solution proposed by [Banerjee et all (2008) ver been conducted and filling this gap is
the primary objective of this paper. We théseby propose to conduct such an evaluation by
comparing this method with the two 0§$§& roximate methods of Wainwright et al. (2006)

and [Hofling and Tibshirani (2009) on ated data.

Here is a brief outline of the paper Section 2] we first summarize the principles of the
aforementioned approximate met . We then present results from an extensive empirical
comparison study. A slight mo Qcation of the method proposed by Banerjee et all (2008) is
especially shown to achieve v ood accuracy and to be extremely fast. Finally, we present

an application from a real ple where we looked for associations among causes of death
in the database of Frencgﬁth certificates of the year 2005 (Section [4)).

2 Approximate methods for binary graphical models

2.1 The Ising model

Let X = (X W, . X (p)) € {0,1}? be a p-dimensional vector of binary random variables.
Given a random sample X4, ..., X,, of i.i.d. replicae of X, we wish to study the associations
between the coordinates of X. One way to do so is to construct the binary graphical model
for the random vector X, that is an undirected graph G = (V, E), where V' contains p vertices
corresponding to the p coordinates and the edges E = (e ¢)1<k<e<p describe the conditional
independence relationships among X @, ..., X® The edge e ¢ between X ) and X is ab-
sent if and only if X*) and X are independent conditional on the other variables. For binary
graphical models, it is common to focus only on the family of probability distributions given
by the quadratic exponential binary model (Wainwright et all, 2006; Banerjee et all, 2008;



Hofling and Tibshirani, 2009; Wang et al.; 2010), also known as the Ising model. Namely, for
all x = (M, .., 2®) € {0,1}?, we assume that the probability of x is given by

P p—1 p
P(x,0) = exp{ Z 0™ + Z Z Hux(k)x(g) — A(@)}, (1)
k=1 k=1¢=k+1
where the so-called log partition function A(-) is defined as follows
p—1 p
= log Z exp{ Z Opz®) + Z Z 9k7gx(k)x(£)}. (2)
x€{0,1}» k=1t=k+1

Note that A(-) is strictly convex and ensures that 3" c¢13» P(x,0) = 1 (note also that the
strict convexity of this function ensures the identifiability of the parameter matrix ©). From
(@), we have

PX® =1,x0 —HXO J #k0)/P <X<k>=o,X<f>=1\\é’m¢k,e>
/P )

. = Ore). (3

POXT = 1,X0 = 0[X0),j 7 k, 0/ P(XD = 0, X0~k j 7 e) ~ PO (3
Therefore, the parameters 6 ; are the conditional log-@d8s ratios. The conditional indepen-
dence between X*) and X® is then equivalent to )¥= 0, that is, the edge e ¢ is absent
if and only if 05, = 0. Consequently, selection 1 ary graphical models is equivalent to

identifying the (k,¢) pairs for which 6, = 0.

From (I)), using the fact that z(*) is binary, ﬁ- enoting by X = (Xy,...,X,,)T the matrix
representing the whole dataset, the l1- pen& log-likelihood writes

Z X)k,e0k,c — nA(O) — A0, (4)
>k

where © is a symmetric matri %h Orr, = O for k = 1,...,p. However, because of the
complexity of the log—partition\@lction, methods based on approximate inference are needed
in most cases and we recall rinciple of three of them in the following paragraphs.

Let us begin by recalli Qﬁat the approximation established by Banerjee et al. (2008) is
only valid for the ﬁrst—oi@—interaction log-linear model described above. On the other hand,
Wainwright et al. (2006), [Hofling and Tibshirani (2009) and Wang et al) (2010) also only con-
sider this simple model but higher-order interaction models can be (at least theoretically)
handled with these methods, at a cost of a dramatically increased computational time.

2.1.1 Multiple logistic regressions

From (), it is easy to see that, for all k = 1, ..., p, setting x(=k) = (x(l), ) k)
2(P)), we have
logit {P(X®) = 1[x")} = 3760 02 + 6. (5)
£k
Wainwright et al! (2006) then extensively study a method (which will be referred hereafter
as SepLogit following the terminology adopted in [Wang et all (2010)) in which ¢;-penalized
logistic regression is used to estimate the neighborhood of each of the p nodes in the graph



separately. (Wainwright et al. (2006) gives rigorous consistency results in a high-dimensional
setting, where the number of nodes is allowed to grow as a function of the number of samples.
The authors give sufficient conditions under which the method will consistently estimate the
neighborhood for every node in the graph simultaneously. In a sense, the paper can be seen
as a discrete version of Meinshausen and Biihlmann (2006).

For a finite number of samples, the p logistic regression problems are solved separately and,
since the results may be asymmetric, they can be combined in one of two ways to draw a
graph. One possibility is to draw an edge between two nodes in the graph only if each node is
estimated to belong to the neighborhood of the other (method SepLogit AND). Alternatively,
we can decide to draw an edge between two nodes so long as at least one of them is estimated
to belong to the neighborhood of the other (method SepLogit OR).

In our empirical comparison study, this method will be implemented using the coordinate
descent procedure developed by [Friedman et al. (2008b) (and 1mp'1'@*nented in the glmnet R
package). R

2.1.2 Pseudo-likelihood maximization g

One of the shortcomings of the method proposed by Walh!m‘uzht et _al) (2006) is the aforemen-
tioned asymmetry. To overcome this limitation, Hoﬂme\%;d Tibshirani (2009) and [Wang et _al.
(2010) recently proposed to use the pseudo-(log- h@ ood, first suggested by Besag (1975).

The pseudo-likelihood is formally defined as Q-

n p
>3 tor(P(xl" \Xf” QXED, XD xP)), (6)

Accordingly, the approach based on &Qﬁlammmamon of the /1-penalized pseudo-likelihood
solves all p logistic regression proble multaneously, while enforcing symmetry. Apart from
symmetry enforcement, this meth iffers from the one studied in Wainwright et al. (2006)
in that the ¢1-norm penalty is lied to the entire network, while in SepLogit it is applied
to each neighborhood. %‘

n

For future use, and still oting by X = (Xy,...,X,,)” the matrix representing the whole
dataset, observe that th udo-likelihood writes
n p
pseudo-/(X, ©) ZZ log {1 + exp(— #* )Xk[ 19[,k])}, (7)

(k)

where X is the same as X' with kth column set to 1 and :E(k) k) _1q (ie., Z;

version of 331( )). Here and elsewhere, M[i,] (resp. M][, k]) denotes the i-th row (resp. k-th
column) of a matrix M.

= 2x; is the spin

Hofling and Tibshirani (2009) first develop and implement an algorithm for maximizing the
{1-penalized pseudo-likelihood function, using a local quadratic approximation to the pseudo-
likelihood. They then use this algorithm as a building block for a new algorithm that maxi-
mizes the true log-likelihood. However, as we already said, they observed that the approximate
pseudo-likelihood is much faster than the exact procedure, and only slightly less accurate.
Therefore, to save computational time, we only considered the approximate pseudo-likelihood



in this paper. In the forthcoming empirical comparison study, this method will be imple-
mented using the BMN R package and will be referred to as BMNPseudo.

Interestingly, and as pointed out by Ho6fling and Tibshirani (2009), the derivative of the
pseudo-likelihood on the off-diagonal is roughly twice as large as the derivative of the exact
likelihood. Moreover, in the case p = 2, it is easy to see that the deviance of the model with
no association (i.e. minus twice the difference between the log-likelihood of this model and the
log-likelihood of the saturated model) when computing with the pseudo-likelihood is twice as
large as the one computed with the exact likelihood (while, obviously, the pseudo-likelihood
coincides with the exact likelihood for the model with no interaction). The generalization of
this striking result for higher p is not straightforward, but our empirical examples suggest it
may hold at least approximately (see Section[3.3]). Therefore, we will consider methods relying
on both pseudo-/(X, ©) (method BMNPseudo) and pseudo-I(X, ©)/2 (method BMNPseudo 1/2)
in the sequel.

\
For the sake of completeness, we shall add that [Wang et al. (ZQAEZ\develop a gradient-descent
algorithm to maximize the ¢1-penalized pseudo-likelihood. T urther propose an extension
to account for spatial correlation among the variables (w@ was relevant in their exam-
ple dealing with genomic data). However, the correspagding LogitNet R package was not
available at the time we wrote this paper, so we Wer&m able to include it in our empirical
comparison study. Q

2.1.3 Gaussian Approximation of the I@g log-likelihood

The basic idea of the method described by Ba&&e)rjee et all (2008) is to replace the log-partition
function in the Ising model with an upper d suggested by [Wainwright and Jordan (2006).

The resulting approximation can then, some manipulation, be put in a form that can be
solved efficiently using block coordinaéﬁlescen‘c. In order to add some specific details, we shall
define some notation. Denote by sy L) € {—1,1}P*™ the spin version of (Xy,...,X,),

and let Z*) denote the sample m@n of variable Z®), for k = 1, ..., p. Now, define the empirical
covariance matrix S as

S|

N Y Zi— 2)(Z; — 2)T, 8
Q‘ ;( ) ) (8)

where Z is the vector of sample means AR Making use of a convez relaxation and a use-
ful upper bound on the log-partition function obtained by [Wainwright and Jordan (2006),
Banerjee et al! (2008) established that an approximate sparse maximum likelihood solution
for a given A has the following form

o = z%,
Oy = —(E7 ke 9)

where the matrix 2;1 is the solution of the following optimization problem

¥t = argm]\z}x{log M| — tr(M(S + diag(1/3))) — M| M1} (10)



More precisely, Banerjee et all (2008) proposed a block-coordinate descent algorithm to solve
a dual formulation of ([0, which can be written as

A 1
Xy = argmmé}x{log W1 : Wiy = Skr + 3 |Wie — Ske| < A} (11)

In the Gaussian case, Banerjee et al. (2008) showed that the ¢;-penalized covariance selection
problem could be written

~

5 = argmax {log | W] [W — Sglloe < A}, (12)

where S¢ is the empirical covariance matrix attached to a given sample of Gaussian vectors.
An algorithm for handling binary graphical models can be derived by comparing (IIl) and
(I2)). The original {0,1} data has first to be transformed into {—1,1} data. Then, adding
the constant 1/3 to the diagonal elements of the resulting empi hl covariance matrix, the
algorithms developed in the Gaussian case (in particular the g,{ o R package developed by
Friedman et all (2008a)) can be reused.

A common question when working with Gaussian variabl sﬁvhether to standardize them, or
equivalently, whether to use the covariance or the corre%%’n matrix. Moreover, in the binary
case, the correlation coefficient between two variables¥(also known as the ¢-coefficient) is
closely related to the y? statistic used to test for (W§nal) independence. Putting these two
observations together, we decided to evaluate a si@-}e modification of the method proposed by
Banerjee et all (2008) where the quantity S+ 1/3) is replaced by the correlation matrix.
Lastly, we also decided to evaluate the modi@tion in which S+diag(1/3) is simply replaced
by S. \\

To recap, we will consider the three fs{l@qng optimization problems

¥ = argmﬁx{lo@— tr(MSY) — A||M|1}, for v =1,2,3, (13)

where S! = (Cov(Z) + diag(l,@%, 5% = Cov(Z) and S3 = Cor(Z). For any ), and every
v =1,2,3 an estimation of is then given by —(CA’K)M.

In our empirical comparisd@-study, the three methods will be implemented using the glasso
R package (Friedman et@, 20084) and will be referred to as GaussCov 1/3, GaussCov and
GaussCor for the choices v = 1, ¥ = 2 and v = 3 respectively (we may as well use the generic
expression GaussApprox when dealing with either methods).

2.2 Sparsity parameter selection

Two procedures for selecting tuning parameters are generally considered, namely cross-validation
(CV) and Bayesian Information Criterion (BIC), the latter being computationally more ef-
ficient as suggested by [Yuan and Lin (2007) for instance. In the case of Gaussian graphical
models, |Gao et _al. (2009) further demonstrate the advantageous performance of BIC for spar-
sity parameter selection through simulation studies. In this paper, we therefore decided to
only consider BIC.

When trying to select the optimal sparsity parameter A using either CV or BIC, however, one
has to pay attention to the following fact. Since, for each A > 0, estimates of the parameters



of interest are shrunk, using them for choosing A from CV or BIC often results in severe
over-fitting (Efron et al., [2004). Therefore, un-shrunk estimates have to be derived before
computing the BIC.

Taking the example of methods GaussApprox, for any A, we have to compute the un-shrunk
matrix N
CY = argmax {log|M|— tr(MS")}. (14)
MeMT

Here, M} = {M > 0: My, = 0 for couples (k,¢) such that (CA'K)M =0} ({M = 0} being the
set of positive definite matrices of order p, and (75\’ being as in ([@))). To solve the optimization
problem (I4]), one approach is to reuse the algorithm used to solve (I3]) after replacing the
scalar parameter A by the penalty matrix A such that Ay, = 0 if é,i‘x # 0, and Ay, = o0

otherwise, where 02‘75 is the shrunk estimation of the coefficient ¢, obtained with the value
A and is used as an initial value for the optimization. Alter zﬁi\/e approaches might be
considered, such as the algorithm developed by [Dahl et al. (209‘8%01? instance.

X
efining
£5 = log |C¥| — tr(CYS" 1>
the BIC procedure now simply corresponds to selecting sparsity parameter Afjj such that

Apic = arg max {nL3 —§X log(n)}, (15)

where K{ = >4, ][{(é’{ Jke # 0} is the deg@-()f freedom of the model selected with the
sparsity parameter A (Yuan and Lin, [2007). Q
N

2.3 Estimation of the conditio Sodds—ratios

In the binary case, a standard meas /%f the strength of association between two variables is
the (conditional) odds-ratio, whic elated to coefficient 6y, ¢ (see ([B])). Therefore, consistent
estimates of the parameters 6\K§would yield consistent estimates of the conditional odds-
ratios. Here again un—shruxé; imates are preferable, and the methods described in the
previous section have to be uSed.

Q.

3 Simulation study

In this section, we compare the model selection performances as well as the computational
time for the methods described in the previous Section. Results are presented for p = 10 and
p = 50. The choice p = 10 has been made for several reasons. First, for such low values
of p the true log-likelihood can be quickly computed, and we can then compare it with the
approximate log-likelihoods (see Section B.3] below). Second, approximate methods are still
faster to compute when p is small, and conclusions drawn in the case of low p are likely to
hold for high p as well (as will be confirmed from our results).

3.1 Evaluation criteria

For each method, every value of A corresponds to a sparsity structure for the matrix © that
can be compared with the true sparsity structure. Namely, for all A and for each method,



we can compute the rate of true positives (correctly identified associations), the rate of false
positives (incorrectly identified associations) as well as the overall accuracy. Precision and
recall (the latter being identical to the true positive rate) can also be computed, as well as
their harmonic mean, often referred to as the Fl-score.

In a first evaluation study, we present for each method the performances achieved by the
“oracle” model, that is the model constructed with optimal sparsity parameter regarding
accuracy. Such an evaluation was not conducted for SepLogit because under this method
the ¢ penalty is applied to each neighborhood and the ”oracle” model would invariably
coincide with the true model. The alternative would be to force the algorithm to choose the
same sparsity parameter value for every regression model. However, using this alternative
approach, we sometimes obtained ”oracle” models that achieved performances worse than
the models selected by the BIC procedure. Therefore, we do not recommend to force the
algorithm to choose the same sparsity parameter value for every L‘gession model.

In a second evaluation study, we present for each method the /@ﬁormances achieved by the
model selected according the BIC procedure described aboygé.>NFor methods GaussApprox,
un-shrunk estimates were derived along the lines described %gction A similar approach
was used for method BMNPseudo. The BMN R package also plldws the use of a matrix of penalty
coefficients. For SepLogit, we had to slightly adapt this@roach because the glmnet package
does not allow for building models with only un-pe Qz d coefficients. So, whenever needed,
a standard logistic regression model was used tc@ un-shrunk estimates. This may make
the method a little slower, but not much since foeach variable, this situation can only arise
for the smallest tested A value, and only if { smallest tested \ value corresponds to the
saturated model.

In addition, the computational time is I‘é}%ted. More precisely, we used a grid [)\min =
A™AX /1000, ..., A™2X] of 50 equally-sp Ez\values (on a log-scale) for the parameter A and we
report the time needed to compute 50 corresponding models for each method (A\™#* is
the data derived smallest value for%’ch all coefficients are zero). Each method was run on a
Windows Vista machine with I ore 2DUO 2.26GHz with 4GB RAM in the case p = 10
and on a MAC Pro machine i} intel Xeon 2x2.26GHz Quad Core with 6GB RAM in the
case p = 50 (the MAC P&b’ achine was approximately 3.5 times as fast as the Windows

machine).
Q

3.2 Data generation
3.2.1 The case p=10

In model (), given that n individuals are observed, the distribution of the corresponding cell
counts n = (ny,x € {—1,1}P) is multinomial with probability P = (P(x,0),x € {—1,1}?).
Accordingly, given a symmetric matrix O, data were drawn from the multinomial distribution
with probability vector P. Four matrices @), 0@ 0G) and ©® were considered, leading
to four different simulation designs.

For ©), "primary” coefficients 01 ¢ were simulated independently using a normal distribution
with mean zero and variance o for some o > 0. Subsequently, only coefficients 0, with an
absolute value greater than 0.06 (corresponding to a conditional odds-ratio of exp(4 x 0.06) ~
1.27, since for {—1,1} variables, the conditional odds-ratio is exp(46)) were retained, all



others being set to 0. The function A(©W) was then computed according to Equation (Z).
Selecting o = 0.05 led to a true model with 10 associations (among the p(p — 1)/2 = 45
potential associations).

Matrices ©®) and ©®) were constructed so that they share the same sparsity pattern as O™,
i.e.,

{(k,0): 0}) = 0} = {(k,0) : 6") = 0} = {(k,0) : ) = 0}

but they have different non-zero coefficients. In either cases, we selected (01 1,...,010,10) =
(—1.3,...,0). For matrix ©®@ | the non-zero 01 ¢ coefficients were set to £0.2, while they were
set to £0.4 for matrix ©®).

For matrix ©@, we proceeded as for matrix ©) but we selected o = 0.3 and only the O 0
coefficients with an absolute value greater than 0.2 were retained (the others being set to
0). Moreover, we selected (611, ...,61010) = (—1.8,...,0). This le%o a true model with 19
associations.

A graphical representation of matrices 1, 2, ©() and “\as well as the corresponding
marginal probabilities IP(X*) = 1), for k = 1, ..., 10, estima%¢{l on a sample of size n = 2500
are presented on Figure [ \k"

3.2.2 The case p =50 Qv

For p = 50, we first considered the case of bloc}.%egonal matrices ©. For j = 1,2,3,4, we
then used matrices © of the form diag(©7, ©7 ,QZ., 7,07).

In a fifth example, matrix ©) was build S@lows. For every k > ¢ > 1, we first draw one
observation u from a (0,1)-uniform distri 3\311, and 9,(2 was then set to 0 if u < 0.9, log(2) if
u > 0.95 and log(1.5) otherwise. The r ing true model consisted of 125 edges. Coefficients
9,25,1 were set to (logit(O.l),...,logit(Q@. Gibbs sampling was further used to generate the
data (consisting of {0,1} Variable@s time).

3.3 Empirical compari of the approximate deviances

In this section, our goal i%’empiricaﬂy evaluate the approximate likelihoods on which the
methods under study r o do so, we will focus on the case where p = 10 since the exact
log-likelihood of the Poisson log-linear model can be computed for such a value of p. For each
of the four ® matrices described above, we proceed as follows. We generate a random sample
of size n = 500, and for each value of the tuning parameter A on an appropriate grid, we apply
method BMNPseudo. This leads to some sparsity structure in the corresponding Ising model
and we can then compute the Gaussian approximate log-likelihoods ﬁf\;”, v=1,2,3 (see (1K)
below) as well as both the exact Poisson log-linear log-likelihood and the pseudo-likelihood
for the Ising model corresponding to this particular sparsity structure. More precisely, the
following quantities were considered,

b = —iiogmexp #5043, 10, , k) (16)

EEO = Zlog (xi, @PO)} (17)
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Figure 1: Marginal probabilities IP(X (k) = 1), for k =1,...,10, estimated on a sample of size
n = 2500 generated using the matrix © = ©U),j = 1,2,3,4 are presented in the left panels.
A graphical representation of matrix ©), j = 1,2,3,4 is given in the right panels.
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Figure 2: Marginal probabilities ]P(X(k) =1), for k=1,...,50, e mated on a sample of size
n = 2500 generated using the matrix © = ©®) are presentedAQ he left panel. A graphical
representation of matrix ©(®) is given in the right panel. g

£$v = log|C¥| — tr(CXS,) for Lv>,"~T,2,3. (18)

In (I6), ©) stands for the un-shrunk matrix deriy®§*under the sparsity structure inferred
from method BMNPseudo with the sparsity paraan value A, and %) and X* are as in @.

In ({I7), @EO is the matrix of coefficients ob 3d using a Poisson log-linear model under
the constrained induced by this sparsity str@lre, and P(x,0) is as in (I)). Lastly, in (I8]),
S1 = (Cov(Z) + diag(1/3)), Se = Cov(Z) »%e Cor(Z) and C¥ is defined as

)
Of = arg ‘%g%? {log |M] — tr(MS5,)},

where MY = {M = 0 : My, @)1‘ couples (k, ) such that (©)),, = 0} (with ©, as in
(@8))-

Figure [3] shows the corres c&‘mg deviances. It can be seen that using the Gaussian ap-
proximate log-likelihood ﬁ‘e‘d on the covariance matrix with the additional 1/3 term on the
diagonal results in a devidwce which is quite far from the exact one. Furthermore, the deviance
obtained with the covariance matrix (without adding the 1/3 term on the diagonal) equals
that obtained with the correlation matrix, and both are closer to the exact deviance. Finally,
the deviance of the pseudo-(log)-likelihood is always greater than the exact deviance. Using
half the pseudo-likelihood corrects this undesirable effect in most cases.

These results should obviously be considered with caution. Even if we tried to use various ©
matrices to generate the data (and the conclusions were consistently the same), a theoretical
study would be needed to confirm these empirical findings.

3.4 Performance evaluation; the case p = 10

Let us first consider the performances achieved by the oracle models (Tables[Iland [2)). Overall,
methods BMNPseudo and GaussCor achieve good performances in terms of accuracy and F1-
score. It is also noteworthy that the computational time is much higher for BUNPseudo, while
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Figure 3: Approximates for the Ising deviance. Deviances were computed for each model
selected by BMNPseudo for various values of the sparsity parameter, on samples of size
n = 500 generated with matrices ©(1) (upper left corner), 6@ (upper right corner), 06 (lower
left corner), and ©@ (lower right corner). Deviances were computed using the exact log-linear
log-likelihood (solid black line, solid circles), the pseudo-likelihood (dashed blue line, circles),
half the pseudo-likelihood (solid blue line, solid circles), and the Gaussian approximate log
likelihoods based on the covariance matrix with an additional 1/3 term on the diagonal (dotted
green line, circles), the covariance matrix (dashed green line, squares) and the correlation
matrix (solid green line, solid circles)(see (16])-(I8]) for the corresponding formula).
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overall performances of GaussCor appear to be slightly higher (especially under the fourth
simulation design).

When focusing on the three GaussApprox methods, we observed the following ranking
GaussCor > GaussCov > GaussCov 1/3.

Consequently, and to save space, methods GaussCov and GaussCov 1/3 will not be considered
in the evaluation of the models selected via the BIC procedure. It is still interesting to note
that GaussCor>GaussCov although we observed that the approximate deviances under these
two methods were equal and close to the exact ones, which turn out to be an insufficient
condition for achieving good performances.

Turning our attention to the evaluation of models selected with the BIC procedure (Tables [3]
and [), a first observation is that, as suggested by the results of S{tlion B3l computing the
BIC with half the pseudo-likelihood (rather than the pseudo—likeleo itself) results in better
models in most cases. Moreover, from the comparisons of the‘qa ults of Tables [ and 2 and
Tables Bl and Ml as n grows, the BIC procedure appears to le to select models achieving
performances similar to those achieved by the ”oracle” mod&]S. Moreover, the computation of
the un-shrunk estimates with method BMNPseudo appeaMcto be very slow (the oracle models
were much faster to compute than the models Selecteq?fhe BIC approach for this particular
method, especially when the sample size is small a@ the fourth simulation design).

Overall, SepLogit OR, SepLogit AND and Gaus@o‘r are the best methods, closely followed
by BMNPseudo 1/2. Lastly, among these candi@'té methods, GaussCor is the fastest.

We should lastly mention that method SeglLogit was further tested using standardized co-
variates in each ¢;-penalized logistic reg é%?on models (results not shown). To motivate this
choice, we may mention that this is t fault option in package glmnet as this approach is
often adopted in applications when y%l—penalization (see Koh et al) (2007) for instance);
its suitability in our context of bi variables was yet questionable. Interestingly, this ap-
proach yielded results very simi o those obtained via the ”standard” one on data generated
using matrices O, 0@ and &) and slightly better when using matrix O (which however
corresponds to the situation Yhere we observed the greatest variability in the performances

of every method). QQ‘

3.5 Performance evaluation; the case p = 50

To save space, we only present here the performances achieved by models selected via the
BIC procedure, on samples of size n = 500 and n = 2500 generated using either matrix
diag(@(j),@(j),(a(j), eu), @(j)), for j = 1,2,3 or matrix ©®). Moreover, the results obtained
in the case p = 10 especially show that method BMNPseudo can be quite slow, and that it
does not outperform method SepLogit. Lastly, among the methods relying on a Gaussian
approximate of the Ising likelihood, method GaussCor was observed to be the best. Therefore,
in order to save computational time, only methods GaussCor and SepLogit were considered
in the case p = 50.

Results are presented in Table Bl They are consistent with what was observed in the case
p = 10. More precisely, methods SepLogit and GaussCor achieve comparable performances.
Regarding computational time, GaussCor is still significantly faster than SepLogit.
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Table 1: Evaluation of the ”oracle models”; the case p = 10. Means (computed over 50 runs)
are given for the computational time needed to compute the models on a grid of 50 equally-
spaced \ values as well as the number of detected associations (POS), the false positive rate
(FPR), the true positive rate (TPR, which equals the recall, REC), the precision (PRE), the
accuracy (Acc.) and the F1 score corresponding to the ”oracle” model.

Method Time (s) POS FPR TPR'T PRE Acc. F1 score
Data generated with © = O
n = 100
BMNPseudo 6.47 3.22 0.034 0.202 0.724 MG 0.291
GaussCov 1/3 0.48 1.84 0.010 0.150 0.935\37?804 0.214
GaussCov 0.48 2.02 0.012 0.160 0.93& 0.804 0.220
GaussCor 0.48 1.98 0.011 0.158 &' 0.804 0.219
n = 500
BMNPseudo 20.20 6.96 0.031 0.588 .883 0.884 0.676
GaussCov 1/3 0.72 7.02 0.033 0.5 0.877 0.883 0.674
GaussCov 0.72 7.00 0.031 %O 0.881 0.884 0.677
GaussCor 0.72 7.02 0.031 é 2 0.881 0.885 0.678
n = 2500 &
BMNPseudo 82.65 9.48 0. +0.938 0.991 0.984 0.961
GaussCov 1/3 0.96 9.36 @- 0.928 0.992 0.982 0.957
GaussCov 0.96 9.40  0W02 0.932 0.992 0.983 0.959
GaussCor 0.96 9.405\ 002  0.932  0.992 0.983 0.959
Data/ggnerated with © = 0®
n =100 X
BMNPseudo 20.17 % 3.62 0.024 0.278 0.864 0.821 0.376
GaussCov 1/3 0.5 Q 3.72 0.025 0.284 0.867 0.821 0.376
GaussCov 0 392 0.028 0.294 0.857 0.821 0.386
GaussCor 3.60 0.025 0.274 0.870 0.820 0.366
n = 500 g.
BMNPseudoQ 3.16 7.02 0.014 0.654 0.950 0.912 0.755
GaussCov 1/3 0.79 744 0.02 0.674 0.927 0.912 0.761
GaussCov 0.79 7.46 0.019 0.678 093 0.913 0.765
GaussCor 0.86 8.24 0.017 0.766 0.938 0.935 0.832
n = 2500
BMNPseudo 83.76 9.74 0.004 0.960 0.987 0.988 0.972
GaussCov 1/3 0.96 9.86 0.008 0.958 0.975 0.984 0.964
GaussCov 0.97 9.70 0.005 0.954 0.985 0.986 0.967
GaussCor 0.99 10.04 0.002 0.998 0.995 0.998 0.996
T TPR=REC.
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Table 2: Evaluation of the ”oracle models”; the case p = 10. Means (computed over 50 runs)
are given for the computational time needed to compute the models on a grid of 50 equally-
spaced \ values as well as the number of detected associations (POS), the false positive rate
(FPR), the true positive rate (TPR, which equals the recall, REC), the precision (PRE), the
accuracy (Acc.) and the F1 score corresponding to the ”oracle” model.

Method Time (s) POS FPR TPR'T PRE Acc. F1 score
Data generated with © = 0
n =100
BMNPseudo 35.08 6.26 0.018 0.564 0.929 m9 0.678
GaussCov 1/3 0.72 6.54 0.021 0.582 0.92 *891 0.687
GaussCov 0.72 6.60 0.022 0.584 0.9 0.891 0.689
GaussCor 0.78 7.66 0.028  0.668 0.904 0.746
n = 500
BMNPseudo 21.02 8.76 0.011 0.838 966  0.956 0.889
GaussCov 1/3 0.84 892 0.027 0.7 0.913 0.933 0.836
GaussCov 0.87 8.88 0.017 %8 0.946  0.948 0.874
GaussCor 0.96 9.68 0.006 é 8 0.981 0.984 0.963
n = 2500 &
BMNPseudo 80.60 10.02 0. +0.994 0993 0.997 0.993
GaussCov 1/3 0.92 10.84 & 0.962 0.894 0.964 0.923
GaussCov 0.97 10.10 ( 007 0.984 0.976 0.991 0.979
GaussCor 0.99 10.005\ 001  0.998 0.998 0.999 0.998
Data/ggnerated with © = 0@
n =100
BMNPseudo 0.055 0.212 0.816 0.635 0.312
GaussCov 1/3 0.084 0.245 0.775 0.633 0.333
GaussCov 0.053 0.199 0.800 0.631 0.297
GaussCor 0.079 0.253 0.761 0.639 0.357
n = 500 *
BMNPseudoQ 83.22 12.94 0.084 0.566 0.859 0.768 0.668
GaussCov 1/3 0.68 12.36 0.08 0.541 0.853 0.760 0.651
GaussCov 0.69 13.02 0.089 0.563 0.840 0.764 0.665
GaussCor 0.75 13.64 0.055 0.643 0.905 0.818 0.745
n = 2500
BMNPseudo 255.87 15.06 0.058 0.714 0.906 0.846 0.796
GaussCov 1/3 0.76 14.68 0.072 0.674 0.880 0.820 0.759
GaussCov 0.78 15.16 0.072 0.700 0.884 0.832 0.778
GaussCor 0.85 15.70 0.037 0.776 0.944 0.884 0.848
T TPR=REC.
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Table 3: Evaluation of the models selected by the BIC procedure; the case p = 10. Means
(computed over 50 runs) are given for the computational time needed to compute the models
on a grid of 50 equally-spaced A values as well as for the number of detected associations
(POS), the false positive rate (FPR), the true positive rate (TPR, which equals the recall,
REC), the precision (PRE), the accuracy (Acc.) and the F1 score corresponding to the model
selected by the BIC procedure.

Method Time (s) POS FPR TPRT PRE Acc. F1 score
Data generated with © = O
n = 100
SepLogit OR 21.94 2.86 0.043 0.136 0.540 0.775 0.234
SepLogit AND 21.94 2.12 0.029 0.112 0.585 0.780 0.216
BMNPseudo 14.20 8.16 0.141 0.322 0.424 .740 0.355
BMNPseudo 1/2 14.20 2.60 0.039 0.122 0.492,0.Y74 0.233
GaussCor 1.12 2.56 0.035 0.132 0.5/@0.780 0.235
n = 500
SepLogit OR 22.91 4.80 0.018 0.416 %;&5 0.856 0.549
SepLogit AND 22.91 4.12 0.014 0.36 .892  0.848 0.504
BMNPseudo 42.43 9.48 0.079 0. 0.725 0.865 0.687
BMNPseudo 1/2 42.43 4.60 0.015 0.895 0.857 0.550
GaussCor 1.16 4.48 0.014 §OO 0.895 0.856 0.539
n = 2500
SepLogit OR 27.89 9.52 0.93  0.979 0.980 0.952
SepLogit AND 27.89 9.32 0.918 0.986 0.979 0.949
BMNPseudo 176.09 11.66 55 0.972 0.846 0.951 0.901
BMNPseudo 1/2  176.09 9.3 Q 005 0.920 0.985 0.979 0.948
GaussCor 1.19 &\% 0.005 0.912 0.983 0.976 0.943
Dat nerated with © = 6
n = 100 ve
SepLogit OR 4.68 0.068 0.266 0.618 0.792 0.361
SepLogit AND § 2.76  0.027 0.182 0.687 0.797 0.302
BMNPseudo 9.82 0.154 0.444 0.482 0.757 0.443
BMNPseudo 1/2 % 3.22 0.033 0.208 0.688 0.799 0.325
GaussCor 1.1 3.80 0.041 0.236 0.686 0.798 0.341
n = 500 Q
SepLogit OR 33.18 7.20 0.018 0.658 0.922 0.910 0.758
SepLogit AND 33.18 6.18 0.007 0.592 0.960 0.904 0.720
BMNPseudo 97.70 10.82 0.087 0.776 0.735 0.882 0.747
BMNPseudo 1/2 97.70 6.56 0.014 0.606 0.934 0.901 0.720
GaussCor 1.16 7.02 0.014 0.652 0.931 0.912 0.758
n = 2500
SepLogit OR 34.52 10.28 0.011 0.990 0.966 0.989 0.977
SepLogit AND 34.52 9.92 0.005 0.976 0.985 0.991 0.980
BMNPseudo 175.80 11.70 0.049 0998 0.872 0.961 0.926
BMNPseudo 1/2  175.80 10.16 0.013 0.972 0.960 0.984 0.965
GaussCor 1.30 10.06 0.005 0.988 0.984 0.993 0.985
T TPR=REC.
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Table 4: Evaluation of the models selected by the BIC procedure; the case p = 10. Means
(computed over 50 runs) are given for the computational time needed to compute the models
on a grid of 50 equally-spaced A values as well as the number of detected associations (POS),
the false positive rate (FPR), the true positive rate (TPR, which equals the recall, REC), the
precision (PRE), the accuracy (Acc.) and the F1 score corresponding to the model selected

by the BIC procedure.

Method Time (s) POS FPR TPRT PRE Acc. F1 score
Data generated with © = 0®
n = 100
SepLogit OR 30.86 7.86 0.055 0.594 0.775 0.867 0.660
SepLogit AND 30.86 544 0.021 0.470 0.868 0.866 0.599
BMNPseudo 276.48 12.18 0.147 0.702 0.613 .819 0.640
BMNPseudo 1/2 276.48 6.44 0.031 0.534 0.856,0.872 0.638
GaussCor 1.26 7.42 0.037 0.612 0.8& .885 0.697
n = 500
SepLogit OR 33.10 10.14 0.027  0.918 %;812 0.960 0.912
SepLogit AND 33.10 8.90 0.009 0.85 967 0.961 0.906
BMNPseudo 163.20 12.78 0.098 0. %0.760 0.910 0.830
BMNPseudo 1/2 163.20 9.80 0.030 9%. 0.906 0.949 0.885
GaussCor 1.26 9.78 0.014 §30 0.957 0.974 0.940
n = 2500 Q_
SepLogit OR 40.76 10.30  0.009% 1.000 0.973 0.993 0.986
SepLogit AND 40.76 10.02 S 1.000 0.998 0.999 0.999
BMNPseudo 176.22 11.14 1.000 0.914 0.975 0.951
BMNPseudo 1/2 176.22 10.18\Q.OO5 1.000 0.984 0.996 0.992
GaussCor 1.26 E&i\b 0.003 1.000 0.989 0.997 0.994
Dat nerated with © = @@
n =100 é?e
SepLogit OR 2096 0.443 0.497 0.452 0.532 0.470
SepLogit AND 14.88 0.322 0.343 0.440 0.537 0.383
BMNPseudo 27.16  0.577 0.640 0.446 0.515 0.523
BMNPseudo 1/2 . 18.70  0.405 0.431 0.440 0.526 0.431
GaussCor Q- 1.87 20.72 0452 0.473 0.432 0.516 0.445
n = 500 Q
SepLogit OR 36.10 10.48 0.038 0.500 0.916 0.767 0.642
SepLogit AND 36.10 8.30 0.012 0.421 0.967 0.749 0.583
BMNPseudo 1090.87 13.52 0.107 0.565 0.815 0.755 0.657
BMNPseudo 1/2  1090.87 9.84 0.044 0.458 0.897 0.746 0.600
GaussCor 1.80 10.70 0.025 0.529 0.945 0.787 0.675
n = 2500
SepLogit OR 52.32 15.26 0.048 0.737 0.922 0.861 0.817
SepLogit AND 52.32 13.44 0.016 0.685 0.971 0.858 0.802
BMNPseudo 2299.82 17.40 0.122 0.748 0.829 0.823 0.783
BMNPseudo 1/2  2299.82 14.72 0.056 0.698 0.905 0.840 0.786
GaussCor 1.86 14.76 0.026 0.741 0.957 0.876 0.834
T TPR=REC.
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Table 5: Evaluation of the models selected by the BIC procedure; the case p = 50. Means
(computed over 50 runs) are given for the computational time needed to compute the models
on a grid of 50 equally-spaced A values as well as the number of detected associations (POS),
the false positive rate (FPR), the true positive rate (TPR, which equals the recall, REC), the
precision (PRE), the accuracy (Acc.) and the F1 score corresponding to the model selected

by the BIC procedure.
Method Time (s) POS FPR TPR'T PRE Acc. FI score
Data generated with © = diag(@™, 00, 6™ oM o)

n = 500

SepLogit OR  236.21 30.00 0.016 0.399 0515 0960  0.447

SepLogit AND  236.21 30.10 0011 0352 058 0963  0.438

GaussCor 31.85 34.06 0013 0376 0562 0962  0.446

n = 2500

SepLogit OR  248.74 5448 0.006  0.938 0.3165’0.991 0.898

SepLogit AND  248.74 50.64 0.004 0921 0, 0.993 0915

GaussCor 28.86 52.34 0.005 0918 é 0.991  0.898
Data generated with © = diag(@)m7 %’@(2)7@(2)7@(2))

n = 500 Q?~

SepLogit OR  285.91 53.36  0.017 \5 1 0626 0970  0.640

SepLogit AND  285.91 3414 0.007AN527 0778 0974  0.626

GaussCor 32.75 4542 0011X70.642 0717 0975 0673

n = 2500

SepLogit OR 304.09 50.26 Q)OS 0.988 0.837 0.991  0.905

SepLogit AND  304.09 50.80\0.003 0.950 0.937 0.995  0.943

GaussCor 29.00 5&{5 0.004 0995 0917 0996  0.954
Data generated v'th o= diag(@)(?’)7 0® o® o®), @(3))

n = 500

SepLogit OR  305.4 68.66 0.019 0936 0.685 0.980  0.790

SepLogit AND 3054 47.04 0.005 0.834 0.888 0989  0.859

GaussCor 60.34 0010 0.968 0.811 0.98)  0.880

n = 2500 .

SepLogit OR Q§0.86 5772 0.007 1.000 0.868 0.994  0.929

SepLogit ANIS380.86 51.50  0.001 1.000 0971 0.999  0.985

GaussCor 25.48 50.48 0.000 1.000 0.991 1.000  0.995

Data generated with © = 0®

n = 500

SepLogit OR 271.84 95.20 0.017 0.610 0.802 0.945 0.692
SepLogit AND 271.84 71.00 0.007 0.508 0.894 0.944 0.647
GaussCor 74.71 86.96 0.013 0.582 0.839 0.946 0.685
n = 2500

SepLogit OR 307.38 129.00 0.008 0.960 0.931 0.989 0.945
SepLogit AND  307.38 117.48 0.002 0.922 0.981 0.990 0.950
GaussCor 65.41 123.68 0.007 0.927 0.938 0.986 0.932
T TPR=REC.
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3.6 Agreement between the compared methods

One way to measure the agreement between two selected models is to compare them with

their intersection. Let G = (V, E1) and Gy = (V, E3) be the two graphs to be compared.

Further let E* = Fy N Ey and denote by $F the cardinality of a set ' of edges. To compare
graphs G; and Gy, we will consider the quantities
jE™

k(G1,92) = ——m e 19

( ) min(§E1, $Es) 19)

R(G1,G2) = (8E1 —HE™) + (1B, — 4E7), (20)

as measures of agreement and disagreement respectively (& is the cardinality of the symmetric
difference between E; and Fs). Observe that according to these measures, the saturated graph
would both agree and disagree ”a lot” with any sub-graph.

Results are presented in Table [ for p = 10 and © = {©®) P&Dh correspond to the two
extreme situations in terms of signal-to-noise ratio. Overall B eudo is closer to SepLogit

than GaussCor, what was expected given the respective pr es of the methods. Moreover,
agreement [resp. disagreement| between the various mo s higher [resp. lower| when the
signal-to-noise ratio is high, that is when n = 2500 and/ = ©®), When the signal-to-noise

ratio is low and models are quite different, a naturaQ estion is how to get the best model.
Intersecting two models is one of the candidate app@ches For the sake of brevity, we do not
present the complete results here, but mtersectlQ'GaussCor and SepLogit OR for instance
resulted in quite conservative models that gen ¥ achieved better performances than either
GaussCor or SepLogit OR (in terms of accu@y and F1-score).

Models derived under method SepLogit standardized covariates were also compared to
the other models (results not shown).sbverall, we observed very good agreement between
the standard approach and the standaMized approach (especially in the case of high signal-
to-noise ratio). We also observed ghightly better agreements between these models and those
derived under method GaussCOIQ ecially on datasets generated using matrix ©(4).

3.7 Comparison of th&onditional odds-ratios estimates

Both methods SepLogi d BMNPseudo have been empirically shown to yield appropriate
estimates for the conditional odds-ratios. On the other hand, it is rather unclear whether
estimates derived from methods relying on the Gaussian approximation would be consistent.
We therefore conclude this simulation study with a simple study to check it.

To avoid interpretation difficulties related to the model selection accuracy, coefficient estimates
were computed under the sparsity structure of the true models and compared with the true
coefficients (this corresponds to the situation where the true sparsity structure is known). To
do so, we used an approach similar to the one used to get un-shrunk estimates for the BIC
procedure.

The mean squared errors for the conditional log-odds ratios, which we defined here as

S otOrs — O10)?
Yokse WO # 0}

MSE = 1000 x (21)
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Table 6: Results of the simulation study: agreement evaluation. Means (along with standard
deviations) of the criteria defined in (I9)-(20) were obtained from 50 runs for various sample

sizes n and matrices ©.
Comparisons Agreement K Disagreement &

Data generated with © = 0%, n = 100

SepLogit OR SepLogit AND 1.000 (0.000) 2.42 \(\1.605)
SepLogit OR BMNPseudo 0.970 (0.071) 2. (1.807)
SepLogit AND BMNPseudo  0.965 (0.099) 1.’%90 (1.578)
BMNPseudo GaussCor 0.941 (0.087) WO (1.463)
SepLogit OR GaussCor 0.941  (0.077) 480 (1.632)
SepLogit AND GaussCor 0.940 (0.0@_ 3.060 (1.476)

Data generated with © = 0® n=25 v
0

SepLogit OR SepLogit AND  1.000 00) 0.280 (0.497)
SepLogit OR BMNPseudo 1.00Q .000) 0.160 (0.370)
SepLogit AND BMNPseudo  0.99 (0.013) 0.200  (0.495)
BMNPseudo GaussCor 1%0’ (0.000) 0.100 (0.303)
SepLogit OR GaussCor Q 0 (0.000) 0.220 (0.418)
SepLogit AND GaussCor %998  (0.013) 0.140  (0.405)
S

Data generated wit Qﬁ oW, n =100
SepLogit OR SepLogif AND ~ 1.000  (0.000) 6.080  (2.146)
SepLogit OR BMNR3¢udo 0.952 (0.048) 4.800 ( )
SepLogit AND seudo  0.957 (0.053) 5.400 (2.148)
BMNPseudo GeddsCor 0.967 (0.054) 6.740 (2.863)
&ssCor 0.896  (0.081) 8.380  (2.900)
) (3.112)

SepLogit O
SepLogit A aussCor 0.931

(

(

(

(

( 9.900
Data rated with © = 0, n=2500
SepLo R SepLogit AND  1.000 (0.000 1.820 1.424
SepLogit OR BMNPseudo 0.981 ( 1.880
SepLogit AND BMNPseudo  0.983  (
BMNPseudo GaussCor 0.950 (
SepLogit OR GaussCor 0972 (

(

SepLogit AND GaussCor 0.980

) (1.424)
) (1.335)
) 1.900  (1.359)
0.050) 2.900 (1.474)
) 2220 (1.183)
) 2200 (1.666)
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Table 7: Results of the simulation study: evaluation of the conditional log-odds-ratios estima-
tion. Means of the mean squared error (MSE) defined in (2I]) were obtained from 50 runs for
various sample sizes n and matrices ©. Three methods were evaluated: the genuine method
of Banerjee et al. (2008) GaussCov 1/3, its modification relying on the correlation matrix

GaussCor and the method relying on multiple logistic regressions SepLogit.
Sample size GaussCov 1/3  GaussCor  SepLogit
Data generated with © = W

n = 500 2.613 2.073 1.957
n = 2500 2.140 0.451 0.435
Data generated with © = 6

n = 500 14.568 7.743 6.175
n = 2500 14.342 6.573 1.201

Data generated with © = 0®
n = 500 58.502 29.197 IO.ZQ\D
D

n = 2500 57.451 26.779

Data generated with © = ¥
n = 500 98.304 68.034 0.007
n=2500  97.402 65.973 = 12.794

Q¥

are reported in Table 7] for methods SepLogit, GalQS'Cov 1/3 and GaussCor in the case p = 10
and for samples of sizes n = 500 and n = 2500 Mer SepLogit each coefficient ék,g was set as
the mean of the two coefficients returned b @ two constrained logistic regressions involved
in this method). It can be observed thx}\i&zﬂrall neither GaussCov 1/3 nor GaussCor led
to consistent estimates for the ) ; coeffipiehts. These methods (especially GaussCor) should
therefore be combined with other m&h ds (for instance SepLogit) when estimates of the
conditional odds-ratios are needed. ?‘

Inconsistency of the estimates ived under method GaussCor can be explained as follows.
Since this method relies on thesg)relation matrix, it is closely related to the method consisting
in performing linear regressio@'at each node (as shown by |Meinshausen and Biithlmann (2006)
in the Gaussian case). Tthfore, the coefficients returned by this method are related to the
coefficients ¢ involved@the linear model

E(X®xH) = PX® = 1x(F) = 7+ 3y 000, (22)
t+k

Clearly, coefficients ;¢ are quite different from the conditional log odds-ratios 6, involved
in the Ising model (see ().

4 Application to the search for associations among causes of
death

The general objective of the application in this example is to detect associations between
causes of death and identify possibly relevant groupings of causes contributing to the death.
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4.1 Description of the data

The dataset we used consists in causes of death recorded in all death certificates (n = 535684)
in France for the year 2005. In France, death certification (compulsory with 100% coverage)
conforms to the WHO guideline: the death process is described starting from the underlying
causes of death and ending with the immediate cause of death; other contributing causes
of death are also recorded. All these causes were considered in the analysis. Causes are
further coded according to the International Classification of Diseases (ICD)(in 2005, the
tenth revision (World Heath Organization, 1994)). The total number of code categories is
large (about 4000 codes used) but for this analysis we applied a simplified classification of
59 entities according to the Eurostat shortlist (EUROSTATI, 2002) (see Appendix A for the
classification used). Therefore, p = 59 and each death certificate can be regarded as a vector
x = (M, ..., 209) in {0,1}5%, where, for all k = 1,...,59, () = 1 if and only if the k-th class
is recorded on the death certificate. About 11% of the certiﬁcatesﬁd more than five causes
of death, 14% had four causes, 26% had three, 30% had tw;&d 8% had a sole cause of
death. The frequencies of each cause are reported in Appen ; the most frequent causes
of death were, in decreasing order, heart failure, ischaemigMeéart diseases, cerebrovascular
diseases, hypertensive diseases, pneumonia, diabetes, lurli_ ncer and senility.

4.2 Graphical model analysis Qv~

Most common causes of death clearly depend up@e and gender, and a natural question is
whether associations among causes of death algg véry with age and gender. We then decided
to split the whole population into strata de by gender and age The complete analysis of
every stratum is out of the scope of the p &@n‘c paper, and we only present here the results
from the analysis of two sub-groups, n ﬁ}r those of males aged between 15 and 24 (2918
observations) and males aged betweeg& and 64 (57045 observations).

First considering the group of age ?’24, we applied GaussCor, BMNPseudo, SepLogit AND,

and SepLogit OR after selectin sparsity parameter according to the BIC procedure de-
scribed above. This yielded m with 113, 107, 61 and 129 associations respectively. Good
agreement was observed be n models derived under methods SepLogit and BMNPseudo

(we had k = 0.935 for the parison between BMN and SepLogit OR for instance). However,
the model derived under: hod GaussCor was slightly different from the three other models
(we had k = 0.700 for the comparison between GaussCor and SepLogit OR and x = 0.918 for
the comparison between GaussCor and SepLogit AND). More precisely, the model obtained
with method GaussCor entailed many more positive associations, a few of which correspond-
ing to variables co-occurring only once in the sub-group. This suggests that method GaussCor
might be a little too sensitive to positive associations, especially when the signal-to-noise ratio
is low (in this particular study, the signal-to-noise ratio is low due to highly unbalanced vari-
ables). Regarding computational time, 1.6 second was needed to compute method GaussCor
while it took 19628 and 876 seconds for computing methods BMNPseudo and SepLogit re-
spectively (analyses were performed on the Windows machine). For these latter two methods,
we were not able to conduct the analysis with the choice A™™ = A™2X /1000, and we had to
select A = \MaX /50 and \™N = \MaX /100 for methods BMNPseudo and SepLogit respec-
tively. It is also noteworthy that the computational time needed for methods BMNPseudo and
SepLogit is mostly due to the computation of the un-shrunk estimates (necessary for the
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derivation of the BIC); omitting this step, the computational time using method BMNPseudo
[resp. SepLogit] is reduced to 4598 seconds [resp. 198 seconds].

Figure @] shows the final retained model for the group 15-24, which is the intersection of the
models derived under methods SepLogit OR and GaussCor. Apart from the obvious asso-
ciation between depression and suicide, the strongest (positive) associations identified were
between diabetes and other endocrinal diseases, colorectal cancer and metastasis, septicemia
and pneumonia, and between diseases of arteries, arterioles and capillaries and cerebrovascular
diseases. The strong negative associations between transport accidents and all other condi-
tions, and between suicide and most other conditions (except depression and other mental
disorders) is also worth noting. These latter associations correspond to well-known sequences
of causes leading to death and most of those present in the figure have strong biological
plausibility.

In the analysis of the older group, we only applied methods SepLogit and GaussCor (to save
computational time), which took 15241 and 4.8 seconds respecpigely. In this case, we had to
use AMIM = \MaxX /50 for method SepLogit. Moreover, when ting the computation of the
un-shrunk estimates, the computational time using method gogit reduced to 1943 seconds.
600, 778 and 708 associations were detected by metho pLogit AND, SepLogit OR and
GaussCor respectively. Good agreement was observed %een the models (we had k = 0.933
for the comparison between GaussCor and SepLog'QO and k = 0.953 for the comparison
between GaussCor and SepLogit AND), which teﬁ;bo confirm that agreement between the
models returned by methods SepLogit and Gaus Cor increases with the signal-to-noise ratio.

Q

5 Discussion \_

S

In this paper we empirically comparg%e\/eral approximate methods designed to search for
associations among binary variable e observed that methods SepLogit and BMNPseudo
achieved similar performances in gg of accuracy and Fl-score, with a slight advantage to
method SepLogit. Moreover, tlf/models selected by both methods are very similar in most
cases, as could be expected the similarity between them. In terms of computational
time, SepLogit appeared to“%e overall faster than BMNPseudo, but the two methods share
the disadvantage of bei tite slow to compute, especially for low values of the sparsity
parameter.

For the method BMNPseudo, we observed that using half the pseudo-likelihood rather than
the pseudo-likelihood itself when computing the BIC enables us to select better models in
most cases. The multiplicative coefficient 1/2 might not be optimal in all situation and some
adaptive coefficient might be derived from a theoretical study of the pseudo-likelihood. Al-
ternatively, cross-validation could be considered at a cost of an increased computational time,
which seems undesirable given the aforementioned lack of speed of this method. Moreover,
the suitability of cross-validation for model selection remains questionable (Gao et all, 2009).

In terms of accuracy, the method proposed by Banerjee et all (2008) was shown to be gen-
erally too conservative. We then proposed a slight modification, referred to as GaussCor, in
which we remove the additive 1/3 term on the diagonal, and use the sample correlation ma-
trix as a starting point for the algorithm. With these modifications, GaussCor combines good
overall performances (comparable to the performances achieved by SepLogit and BMNPseudo)
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hypertens perinat_cond skire_dis

tuberc c_lung c_pancreas

c_stemac c_oral isc_heart_dis

mainut dementia embelism

Figure 4: Graphical model obtained wi ytoscape on the real data set (males aged between
15 and 24 years). Positive associat] (solid lines) and negative associations (dashed lines)
are presented. The line widths @ges are proportional to the conditional log-odds-ratios
(estimated using multiple logistie¥egressions built under the constraint implied by the retained
model). For instance, the (a \;te value of the) conditional log-odds-ratio was about 4.5 for

the association depression ide, 3 for the association liver disease/other diseases of the
digestive system, 1.7 for association other infectious disease/other endocrinal disease, and
0.35 for the association er mental disorderd/suicide. Similarly, vertices are represented

by balls with diameter related to the observed frequency of the causes of death. Transport
accidents were reported on about 40% of the death certificates while falls were only reported
on 1.2% of the death certificates. Conditions listed on the left side are not associated with
any other condition or disease.
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and exceptional computational speed. In particular, GaussCor was observed to be between
3 and 200 times faster than the other methods on simulated data. This speed is partic-
ularly desirable for handling truly high-dimensional datasets since the concurrent methods
(SepLogit or BMNPseudo) might be dramatically slow in such cases. To be complete, we
should mention that method SepLogit could be implemented using other sparse logistic re-
gression algorithms that might be faster than the glmnet R package (see [Koh et all (2007);
Genkin et all (2007); Lee et al. (2006) for instance). However, we think that the compari-
son conducted here was fair since both R packages glmnet and glasso rely on a coordinate
descent algorithm (Friedman et al., [2008b).

Interestingly, we also observed that the models selected by methods GaussCor and SepLogit
can be significantly different, especially in the situation of low signal-to-noise ratio. On our
real example, we decided to retain the intersection of the two selected models as the final
model, which led to conservative but competitive models on simulated examples. However,
other approaches can be considered and it would be interestingzq) urther study how these
methods can be optimally combined. &

Approximate methods that use either multiple logistic re%;ions or the pseudo-likelihood
have been shown to attain performances similar to thosq réached using exact inference at a
lower computational cost (Hofling and Tibshirani, 20092%(_)’ur results suggest here that using
Gaussian approximates of the Ising likelihood can ep§Art similar statistical performance at a
greatly improved speed. In the absence of a theore justification for the good performances
achieved by this method however, we can only claitd here that GaussCor is a candidate method
that can be recommended in some cases; a @Tétical study might enable to have a better
idea of what these cases are.

N
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Appendix: The retained classification of causes of death

Disease/Condition Label ICD-10 codes Count
Septicaemia septicaemia A40-A41 25713
tuberculosis tuberc A15-A19, B90 1720
aids and HIV infection aids B20-B24 1094
Other infectious disease other_infect A00-A14, A20-A39, A42-B19, B25- 14188

B89, B91-B99
Oral cancer c_oral C00-C14 5076
Oesophageal cancer c_oesoph C15 4654
Stomach cancer c_estomac C16 5642
Colorectal cancer c_colorect C18-C21 19587
Liver cancer c.liver C22 8528
Pancreas cancer c_pancreas C25 8615
Larynx cancer clarynx C32 2062
Lung cancer c_lung C33-C34 30642
Breast cancer c_breast C50 \ 14439
Uterus cancer c_uterus C53-C55 \2\ 3708
Prostate cancer c_prostate Co61 & 13361
Bladder cancer c_bladder C67 v 5946
Hodgkin’s disease and leukemia c-hodgkin C81-C96 % 15574
Secondary malignant neoplasm c_metasta Ccr7-C 50314
Other cancers c_other C17, -C24, C26-C31, C35-C49, 72943

CSQ? 2, 056-C60, C62-C66, C68-

C80, C97-D49

Diseases of the blood blood_dis %50-D89 12955
Diabetes diabetes 10-E14 32704
Malnutrition malnu Q- E40-E46 12713
Other endocrinal disease other_ n@ E00-E09, E15-E39, E47-E90 27490
Dementia de e&ea. FO1-F03 22966
Mental disorders due to use of alco- alconjhnent F10 12634
hol \2{
Mood disorders ﬂ%pression F30-F39 8628
Other mental disorders ther_ment F00, F04-F09, F11-F29, F40-F99 15629
Parkinson’s disease % parkinson G20 8598
Alzheimer’s disease Q Alzheimer G30 22568
Other diseases of the nervm& other_nervous GO00-G19, G21-G29, G31-H95 27028
tem,the eye and adnexa
Hypertensive diseases * hypertens 110-115 44117
Ischaemic heart diseaseQ isc_heart_dis ~ 120-125 62071
Pulmonary embolism,phlebitis and embolism 126, 180-182 16697
thrombophlebitis
Cardiac arrhythmias card_arrhytm  147-149 38020
Heart failure heart_fail 150 73268
Cerebrovascular diseases cere_vasc 160-169 58161
Diseases of arteries, arterioles and arteries 170-179 25567
capillaries
Other diseases of the circulatory other_circ 100-109, I16-119, I127-146, I51-159, 80060
system 183-199
Influenza (other than avian in- influenza J10-J11 1192
fluenza)
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Disease/Condition Label ICD-10 codes Count
Pneumonia pneumo J12-J18 38677
Asthma and status asthmaticus asthma J45-J46 2886
Other chronic lower respiratory dis-  other_low_resp  J40-J44, J47 17739
eases

Lung diseases due to external lung_extern J60-J70 10137
agents

Other diseases of the respiratory other_resp J00-J09, J19-J39, J48-J59, J71-J99 59123
system

Peptic ulcer pept_ulcer K25-K28 1965
Diseases of liver liver_dis K70-K77 20661
Other diseases of the digestive sys- other_digest K00-K24, K29-K69, K78-K99 34507
tem

Diseases of the skin and subcuta- skin_dis L00-L99 11056
neous tissue

Diseases of the musculoskeletal sys- musculoskeletal ~ MO00-M99 9644
tem and connective tissue \

Diseases of the genitourinary sys-  genito_urinary = NO0-N99 \2\ 37683
tem &

Pregnancy, childbirth and the puer- pregnancy 000-099 ?* 67
perium

Certain conditions originating in perinat_cond P00-P96 2100
the perinatal period

Congenital malformations, defor- congenit_malf QQE;Q 2411
mations and chromosomal abnor- Q

malities Q_

Senility senility MR54 23646
Other symptoms and abnormal other_und RO0-R53, R55-R59 252979
clinical findings, not elsewhere clas- Q

sified \

Transport accidents tra, %\acc VO01-V99 5686
Falls \22} S WO00-W19 6217
Intentional self~-harm &wlcide X60-X84 10900
Other external causes of morbidity er_extern W20-X59, X85-Y89 21813

and mortality S
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